
INSTITUT FÜR INFORMATIK
Lehr- und Forschungseinheit für

Programmier- und Modellierungssprachen

Oettingenstraße 67, D–80538 München

LMU
Maximilians
Universität
München

Ludwig

A Gentle Introduction into Xcerpt,

a Rule-Based Query and

Transformation Language for XML

François Bry and Sebastian Schaffert

Technical Report, Computer Science Institute, Munich, Germany
http://www.pms.informatik.uni-muenchen.de/publikationen
Forschungsbericht/Research Report PMS-FB-2002-11, June 2002

A Gentle Introduction to Xcerpt, a Rule-based

Query and Transformation Language for XML

François Bry and Sebastian Schaffert

Institute for Computer Science, University of Munich
http://www.pms.informatik.uni-muenchen.de/

Abstract. This articles introduces into Xcerpt, a rule-based query and trans-
formation language for XML. First, the design principles of Xcerpt are given.
Then, the essential construct of Xcerpt are explained and illustrated on exam-
ples: ”query terms”, i.e. patterns using which Xcerpt queries are posed, ”con-
struct terms”, i.e. pattern re-assembling the data selected in a query term into
a new data item, and ”construct-query rule” linking queries with construct
terms. Then, Xcerpt and XQuery are compared on examples and the advan-
tages of Xcerpt are discussed. Finally, an outlook into Xcerpt’s declarative and
procedural semantics as well as into Xcerpt’s features currently developed are
given.

1 Introduction

Essential to semistructured data [1] is the selection of data from in-
completely specified data items. For such a data selection, a path lan-
guage such as XPath [2] is convenient because it provides constructs
similar to regular expressions such as ∗, +, ?, and “wildcards” that
give rise to a flexible node retrieval. For example, the XPath expres-
sion /descendant::a/descendant::b[following-sibling::c] selects all el-
ements of type b followed by a sibling element of type c that occur at any depth
within an element of type a, itself at any depth in the document.

Query and transformation languages developed since the mid 90es for XML
[2] and semistructured data – e.g. XQuery [2], the precursors of XQuery [3],
and XSLT [2] – rely upon such a path-oriented selection. They use patterns
(also called templates) for expressing how the data selected using paths are
re-arranged (or re-constructed) into new data items. Thus, such languages in-
tertwine construct parts, i.e. the construction patterns, and query parts, i.e.
path selectors.

Example 1. An example for this intertwining of construct and query parts
is the following XQuery query from the XQuery Use Cases [4]. This query
creates a list of book titles for each author from a bibliography database
like that of Example 2. It consists in a construction pattern specify-
ing the structure of the data to return. The query parts, i.e. the def-
inition of the values for the variables $a and $b, are included in the
construction pattern. Note that the (XPath) definitions of the variables
$a and $b refer to a common sub-path document("http://www.bn.com").
Note also the rather complicated condition relating values of $a and $b:
some $ba in $b/author satisfies deep-equal($ba,$a).

<results>

{

for $a in distinct-values(document("http://www.bn.com")//author)

return

<result>

{ $a }

{

for $b in document("http://www.bn.com")/bib/book

where some $ba in $b/author satisfies deep-equal($ba,$a)

return $b/title

}

</result>

}

</results>

The same query is expressed in Xcerpt in Example 19. ut

The intertwining of construct and query parts as with XQuery can be found
in dynamic HTML documents that contain (ECMAScript, Java Applets or
Servlet) programs: The HTML page specifies a construction pattern, the pro-
grams corresponds to queries. The intertwining of construct and query parts has
some advantages: For simple query-construct requests, the approach is rather
natural and results in an easily understandable code. However, intertwining
construct and query parts also has drawbacks:

1. Complex queries are often difficult to express and to understand,
2. unnecessarily complex path selections, e.g. XPath expressions involving both

forward and reverse axes [5], are possible,
3. in presence of several path selections, as in Example 1, the overall structure

of the retrieved data items might be difficult to grasp.

Among the query and transformation languages, UnQL [6] is a noticeable
exception. This language first considered using patterns instead of paths for se-
lecting semistructured data. Applying a kind of pattern matching algorithm (re-
minding of those pattern matching algorithms used in functional programming
and in automated reasoning) to an UnQL query pattern and a (variable-free)
database item binds the variables occurring in the query pattern to parts of
the database item. This paper further investigates using query patterns. It de-
scribes Xcerpt, a query and transformation language for XML. Salient features
of Xcerpt are the following:

1. Instead of (a form of) pattern matching, a (non-standard form of) unifica-
tion, called simulation unification [7], is used giving rise to make two query
patterns both with variables identical.

2. Within an Xcerpt query pattern, a variable may be constrained to a
(sub-)pattern.

3. The paradigm of Xcerpt is that of SQL and of logic programming. Thus,
a query might have several answers. Some of (all, resp.) the answers to a
(sub)query can be selected using the Xcerpt constructs all (some, resp.).

4. A chaining of queries expressed using rules makes it possible to split complex
queries into simple parts.

A metaphor for Xcerpt is to see Xcerpt queries as forms, answers as form
fillings yielding database items. With Xcerpt, patterns are used not only for
constructing expressions, but also for selecting data.

2

2 Design Principles of Xcerpt

Query as form. An Xcerpt query corresponds to a form, an answer to a filling
yielding a database item. It is possible to constrain a variable within an Xcerpt
query to some pattern.
Referential transparency. The meaning of a subexpression is the same wher-
ever it appears, i.e. destructive variable assignments are prohibited.
Compositional semantics. The semantics of an Xcerpt expression is defined
recursively in terms of the semantics of its parts, i.e. Xcerpt has a Tarski-style
model theory.
Multiple variable bindings. Like SQL queries and Logic Programming goals,
Xcerpt queries might have several answers, each answer binding the query vari-
ables differently.
Separation of construction and query proper. In construct expressions
variables may occur, but neither query expressions, nor conditions on variables.
Symmetry. Xcerpt queries allow similar forms of incomplete specifications in
breadth, i.e. concerning siblings, and in depth, i.e. concerning children.
Circularity. Both, Xcerpt expressions and answers are query-able using
Xcerpt, i.e. they are XML data. Note that this is more stringent than an XML
format for Xcerpt queries.
Furthermore, the requirements of [8] are fulfilled by Xcerpt.

3 Basic Constructs of Xcerpt

3.1 Database Terms

Database terms are XML documents in a simplified syntax. Following a com-
mon practice in XML query language and semistructured data research [1], the
children of a document node may be either ordered (as in SGML and in stan-
dard XML), or unordered (as in semistructured data). A database is an XML
document or a set (or multiset) of XML documents.

Example 2. The following database term with root labelled bib describes the
book offers of an online book stores called bn.com . This example is inspired
from the XQuery Use-Cases [4].

bib {

book {

title { "TCP/IP Illustrated" },

authors [author { last { "Stevens" }, first { "W." } }],

publisher { "Addison-Wesley" },

price { "65.95" }

},

book {

title { "Advanced Programming in the Unix environment" },

authors [author { last { "Stevens" }, first { "W." } }],

publisher { "Addison-Wesley" },

price { "65.95" }

},

book {

title { "Data on the Web" },

authors [

author { last { "Abiteboul" }, first { "Serge" } },

3

author { last { "Buneman" }, first { "Peter" } },

author { last { "Suciu" }, first { "Dan" } }

],

publisher { "Morgan Kaufmann Publishers" },

price { "39.95" }

},

book {

title { "The Economics of Technology and Content for Digital TV" },

editor { last { "Gerbarg" }, first { "Darcy" }, affiliation { "CITI" } },

publisher { "Kluwer Academic Publishers" },

price { "129.95" }

}

}

In this database term, the square brackets [] around the author elements
indicate that the list of authors is ordered. The curly brackets { } used in other
elements indicate that their subelements are unordered. ut

Example 3. The following database term with root labelled reviews gives the
book offers of an online book stores called amazon.com . Like Example 2, this
example is inspired from [4].

reviews {

entry {

title { "Data on the Web" },

price { "34.95" },

review { "A good discussion of semi-structured database systems and XML." },

},

entry {

title { "Advanced Programming in the Unix environment" },

price { "65.95" },

review { "A clear and detailed discussion of UNIX programming." },

},

entry {

title { "TCP/IP Illustrated" },

price { "65.95" },

review { "One of the best books on TCP/IP." }

}

}

ut

Xcerpt database terms are “XML documents in disguise”: Apart for the
curly brackets ({ }) for unordered subelements that XML (still) does not sup-
ports, the conversion form Xcerpt syntax into standard XML syntax is straight-
forward, as the following example illustrates:

Example 4. Except for the element ordering which in (current) XML cannot
be dispensed of, the database term of Example 3 denotes the following XML
document:

<reviews>

<entry>

<title>Data on the Web</title>

<price>34.95</price>

<review>A good discussion of semi-structured database systems and XML.</review>

</entry>

<entry>

4

<title>Advanced Programming in the Unix environment</title>

<price>65.95</price>

<review>A clear and detailed discussion of UNIX programming.</review>

</entry>

<entry>

<title>TCP/IP Illustrated</title>

<price>65.95</price>

<review>One of the best books on TCP/IP.</review>

</entry>

</reviews>

ut

For expressing that the content of an element is not ordered, one might con-
veniently rely as follows on a Boolean attribute ordered (with default value
ordered = "yes").

Example 5.

<reviews ordered="no">

<entry ordered="no">

<title>Data on the Web</title>

<price>34.95</price>

<review>A good discussion of semi-structured database systems and XML.</review>

</entry>
...

</reviews>

ut

3.2 Query Terms

A query term is a pattern that specifies a selection of database terms very much
like Prolog goals and SQL selections. The evaluation of query terms differs from
the evaluation of logical atoms and SQL selections as follows:

1. Answers might have additional sub-terms to those mentioned in the query
term.

2. Answers might have a different sub-term ordering than the query.
3. A query term might specify sub terms at an unspecified depth.

In query terms, the single square and curly brackets, [] and { }, denote
“exact sub-term patterns”, i.e. single (square or curly) brackets are used in a
query term to be answered by database terms with no more sub-terms than
those given in the query term. Double square and curly brackets, [[]] and {{ }},
on the other hand, denote “partial sub-term patterns”.

Example 6. The following Xcerpt query term has as an answer the database
term of Example 2:

bib {{

book {{

title { "Data on the Web" },

}}

}}

However, the database of Example 2 is not an answer to the following query
term. Indeed, because of the single braces, answers to this query term cannot
have more than one book element.

5

bib {

book {{

title { "Data on the Web" },

}}

}

ut

[] and [[]] are used if the sub-term order in the answers is to be that of
the query term, { } and {{ }} are used otherwise. Thus, possible answers to
the query term t1 = a[b, c{{d, e}}, f] are the database terms a[b, c{d, e, g}, f]
and a[b, c{d, e, g}, f{g, h}] and a[b, c{d, e{g, h}, g}, f{g, h}] and a[b, c[d, e], f]. In
contrast, a[b, c{d, e}, f, g] and a{b, c{d, e}, f} are no answers to t1. The only
answers to f{ } are f-labelled database terms with no children.

Query terms may contain variables that are bound during query evaluation.

Example 7. The following query term queries the database of Example 2 for
titles and authors. An answer to this query binds the variables TITLE and
AUTHOR to the corresponding values:

bib {{

book {{

title { TITLE },

authors {{ author { AUTHOR } }}

}}

}}

The variables TITLE and AUTHOR are bound in several manners as follows:
AUTHOR = "Dan Suciu" and TITLE = "Data on the Web" on the one hand,
and AUTHOR = "Serge Abiteboul" and TITLE = "Data on the Web" on the
other hand. ut

Xcerpt evaluation of query terms is based on a non-standard evaluation
called Simulation Unification. This form of unification, which is intuitively de-
scribed on examples in the present article, is formally addressed in [7].

3.3 The Construct ; (“as”)

In Example 7, variables are “leafs” (i.e. atomic sub-terms) of the query term.
In Xcerpt, a variable can also occur at a “higher position” in a query term and
be assigned a “lower bound” in form of a sub-term constraining the bindings
for the variable.

Example 8. The following Xcerpt query binds the variable TITLE to the com-
pound element title { ... } (thus retrieving not the “leaf” but the parent
element title):

bib {{

book {{

TITLE ; title,

authors {{ author { AUTHOR } }}

}}

}}

6

The constraint TITLE ; title expresses that only terms of the form
title{...} can be bound to the variable TITLE. Without this constraint, terms
with another label than title, e.g. terms of the form e.g. price{...}, could
be bound to TITLE. ut

Example 9. A variable can also be constrained to a compound query term like
AUTHOR in the following query term:

bib {{

book {{

TITLE ; title,

authors {{

author { AUTHOR ; author{{ last{ "Suciu" }, first{ FIRSTNAME } }} }

}}

}}

}}

ut

The advantage of constraining a variable to a sub-term within a query term,
instead of outside the query term through an additional constraint, is to better
convey the overall structure of the considered query. The query term of Example
9 better convey this structure than e.g. the following (ternary) conjunction:

Example 10.

and{

bib {{

book {{

TITLE,

authors {{ author { AUTHOR } }}

}}

}},

TITLE ; title,

AUTHOR ; author{{ last{ "Suciu" }, first{ FIRSTNAME } }

}

ut

At a glance, one grasps from the query term of Example 9 the intended struc-
ture. With the (conjunctive) query term of Example 10, this structure must
be constructed in thoughts. Arguably, the possibility of constraining variables
within query terms appropriately realizes the “query-as-form” metaphor (cf.
Section 2). The ; construct of Xcerpt is reminiscent of variables denoting
matching patterns in Haskell.

3.4 The Construct descendant

The descendant construct is used to express that a sub-term occurs at an in-
definite depth. It is a counterpart of the Kleene star operator of regular path
expressions and of XPath’s //.

Example 11. The following query terms retrieves the titles of books with an
author “Stevens” at any depth:

bib {{ book {{ TITLE ; title, authors {{ desc "Stevens" }} }} }}

ut

7

In contrast to the Kleene operator of regular path expression, the descendant

construct of Xcerpt makes it possible to specify several variables at once and
to express their relative positions within a term.

Example 12. The following query term retrieves bib elements containing an
author element with a given structure and specifies variables within these ele-
ments:

bib {{

desc author {{ last{ "LASTNAME" }, first { FIRSTNAME } }}

}}

}}

ut

Arguably, the descendant construct of Xcerpt contributes to realize the
“query-as-form” metaphor (cf. Section 2).

In a query term, multiple occurrences of a same term variable are possible.
E.g. a possible answer to a{{X ; b{{c}}, X ; b{{d}}} is a{b{c, d}}. However,
a[[X ; b{c}, X ; f{d}]] has no answers, for labels b and f are distinct. The
; construct makes it possible to express “variable cyclic” query terms such as
a{{ X ; b{{X}} }}. Such “variable cyclic” query terms are undesirable, for
their variables cannot be bound to finite database terms. Therefore, “variable
cyclic” query terms are forbidden in Xcerpt.

3.5 Construct Terms

Xcerpt Construct terms serve to re-assemble variables, the values (or bindings)
of which are specified in query terms, so as to form new database terms. Thus,
like in database terms both constructs [] and { } can occur in construct terms
for expressing ordered and unordered elements respectively. The constructs [[]]
and {{ }} are not allowed in construct terms because these constructs that
serves to express partial matches (in query terms) do not make sense when
data items are constructed. Variables as references to sub-terms specified in
a query can also occur in construct terms. The construct ; is not allowed in
construct terms, the rationale for this being that variables should be constrained
where they are defined, i.e. in query terms, not in construct terms where they
are used to specify new terms (cf. Section 2).

Example 13. Assuming that some query term (e.g. that of Example 7) spec-
ifies values for the variables TITLE and AUTHOR, the following construct term
assembles these values in a result element:

results { result { TITLE, AUTHOR } }

With the variable bindings TITLE = title { "TCP/IP Illustrated" }

and AUTHOR = author { last { "Stevens" }, first { "W." } }, this
construct term yields the following database term:

results {

result {

title { "TCP/IP Illustrated" },

author { last { "Stevens" }, first { "W." } }

}

}

ut

8

3.6 The Construct all

Recall that evaluating an Xcerpt query in general yields several bindings for
each of its variables. It is sometimes needed to collect all the bindings for a
variable in an answer. The construct all serves this purpose.

Example 14. The following construct term collects in a results element all
result elements resulting from the various bindings of the variables TITLE and
AUTHOR:

results { all result { TITLE, AUTHOR } }

If the variables TITLE and AUTHOR are bound by an evaluation of the query term
of Example 7 against the database term of Example 2, then the construct term
given above yields the following database term:

results {

result {

title { "TCP/IP Illustrated" },

author { last { "Stevens" }, first { "W." } }

},

result {

title { "Advanced Programming in the Unix environment" },

author { last { "Stevens" }, first { "W." } }

},

result {

title { "Data on the Web" },

author { last { "Abiteboul" }, first { "Serge" } },

author { last { "Buneman" }, first { "Peter" } },

author { last { "Suciu" }, first { "Dan" } }

}

}

ut

Formally, all t denotes the collection of all instances of t obtained from all
possible bindings of the variables that are free in term t, all t′ sub-terms of t

being (recursively) evaluated in the same way. A variable X is free in a term t,
if X does not occur in t within the scope of an all expression.

The all t construct gives rise to a simple and intuitive expression of queries
that are rather complex in languages requiring an explicit iteration over answers.

Example 15. The following construct term returns for each author the list of
his titles:

results {

all result { AUTHOR, all TITLE }

}

Compare this construct term with the much more complex XQuery expression
of Example 1. The Xcerpt construct term given above is close to the the English
specification, the XQuery expression of Example 1 is not. ut

Example 16. The construct term returning for each title all its authors is ex-
pressed in Xcerpt as follows:

results { all result { all AUTHOR, TITLE } }

ut

9

The symmetry of the natural language specifications of Examples 15 and 16
(“for each author, all title” and “for each title, all authors”) is kept in the Xcerpt
construct terms, but not in the corresponding XQuery expressions. The Xcerpt
expressions Examples are very simple 15 and 16 compared with their XQuery
counterparts (cf. Example 1). The Xcerpt construct terms of Examples 15 and
16 are very close to the the English specification, their XQuery counterparts
are not (cf. Example 1).

The construct all imposes conditions on the scopes of variables in construct
terms: Two occurrences of a variable X within and outside a all expression,
respectively, denote different variables.

3.7 The Construct some

It is sometimes useful to non-deterministically select a number n ≥ 1 of answers,
i.e. variable bindings. The construct some serves this purpose.

Example 17. The following construct term collects in a results element two
result elements resulting from some (non-deterministically selected) bindings
of the variables TITLE and AUTHOR:

results { some 2 result { TITLE, some AUTHOR } }

If the variables TITLE and AUTHOR are bound by an evaluation of the query term
of Example 7 against the database term of Example 2, then the construct term
given above might yield the following database term:

results {

result {

title { "Data on the Web" },

author { last { "Abiteboul" }, first { "Serge" } }

}

result {

title { "Advanced Programming in the Unix environment" },

author { { last { "Stevens" }, first { "W." } } }

}

}

ut

The construct some imposes the same conditions on the scopes of variables
in construct terms as the construct all does: Two occurrences of a variable X

within and outside a some expression, respectively, denote different variables.
The rational for this scoping rule is that each of the variable occurrences might
denote different sub-terms.

Example 18. The pairs of variables TITLE and AUTHOR in each line of the fol-
lowing construct term might be bound differently:

results {

sometwo {

some 2 result { TITLE, AUTHOR }

},

result { TITLE, AUTHOR }

}

If the variables TITLE and AUTHOR are bound by an evaluation of the query term
of Example 7 against the database term of Example 2, then the construct term
given above might yield the following database term:

10

results {

sometwo {

result {

title { "Data on the Web" },

author { last { "Abiteboul" }, first { "Serge" } }

}

result {

title { "Advanced Programming in the Unix environment" },

author { { last { "Stevens" }, first { "W." } } }

}

},

result {

title { "TCP/IP Illustrated" },

author { last { "Stevens" }, first { "W." } }

}

ut

Xcerpt’s construct some makes it possible not to return a complete collection
of data items in those cases where only a sample is needed. In querying data
on the Web, incomplete data samples are often needed, e.g. for determining
the schema of a Web site. The construct some can be seen as a declarative
counterpart to Prolog’s cut (!) and once primitives.

4 Construct-Query Rules

Xcerpt construct-query rules (short: rules) relate queries consisting in (and and
or) connected query terms, and construct terms. In Xcerpt, both and and or

may have an arbitrary arity a ≥ 1 and may be nested. The connectives and

and or have the intuitive meaning: and requires all sub-queries to be satisfied,
or requires at least one of the sub-queries to be satisfied. In most cases, it is
worth requiring that each variable occurring in the construct term of a rule
is bound by every evaluation of the rule’s query, i.e. variable in construct-
query rules are “range-restricted” or “allowed”. An Xcerpt rule has the form
rule{ cons { c }, query { q } } } (also denoted c ← q) where c and q

respectively denote a construct term and a query. The left hand-side, i.e. the
construct term, of a rule is called the rule’s “head”, the right hand-side of a
rule, the rule’s “body”. In contrast to the body of a Prolog clause, the body of
an Xcerpt rule cannot be empty.

Example 19. The following rule relates the query and construct terms of Ex-
amples 7 and 15:

rule {

cons {

results { all result { TITLE, all AUTHOR } }

},

query {

in { "bn.com" } ,

bib {{ book {{ TITLE ; title, authors {{

AUTHOR ; author }} }} }}

}

}

ut

11

Note the in construct in the body (or query part) of the rule. This con-
struct specifies the (URI of the) resource against which the rule’s query is to be
evaluated. A compound query might retrieve data from distinct resources. In
the following example, the rule’s body is a conjunction of two queries against
distinct resources.

Example 20. The following rule collect for all books offered at both sites bn.com
and amazon.com, their titles and their bn.com and amazon.com prices:

rule {

cons {

books {

all book { title { TITLE }, price-a { PRICEA }, price-b { PRICEB } }

}

},

and {

query {

in { "bn.com" },

bib {{

book {{ title { TITLE }, price { PRICEA } }}

}} },

query {

in { "amazon.com" },

reviews {{

entry {{ title { TITLE }, price { PRICEB } }}

}} }

}

}

ut

The conjunction of query terms in example 20 expresses an equijoin on book
titles TITLE.

Example 21. The following rule collects all possible title/price pairs from each
site amazon.com and bn.com and returns them in a unified format:

rule { cons {

books {

all book { title { TITLE }, price { PRICE } }

}

},

or {

query {

in { "bn.com" },

bib {{

book {{ title { TITLE }, price { PRICE } }}

}} },

query {

in { "amazon.com" },

reviews {{

entry {{ title { TITLE }, price { PRICE } }}

}} }

}

}

ut

12

4.1 Ordered vs. Unordered Boolean Connectives

The connectives and and or may be used both with curly brackets { }, indicating
that the evaluation order is of no importance as well as square brackets [],
indicating that the query terms have to be evaluated in the specified the order.
While and {...} and or {...} might be seen as more declarative and often
give rise to optimisation through reordering of their arguments, and [...] and
or [...] allows a programmer a finer control over the evaluation. Note that in
most programming languages, e.g. SML, Haskell, Prolog, Pascal, the Boolean
connectives and and or have ordered arguments.

4.2 Boolean Connectives Within Query Terms

Consider the following compound query retrieving from a single resource db

country elements with waters described by sea, lake, or river subelements:

Example 22.

or {

query {

in { "db" },

desc country {{

COUNTRYNAME ; name,

sea

}}

},

query {

in { "db" },

desc country {{

COUNTRYNAME ; name,

lake

}}

},

query {

in { "db" },

desc country {{

COUNTRYNAME ; name,

river

}}

}

}

ut

Xcerpt allows the following expression of the same query in which the or con-
nective occurs within a single query term:

Example 23.

query {

in { "db" },

desc country {{

NAME ; name,

or { sea, lake, river }

}}

}

ut

13

For the ease of programming as well as for an efficient query evaluation the
query of Example 23 is preferable to the query of Example 22, for it stresses
both, the common structure of the three alternatives of the disjunction, and
the common resource against which each alternative of the disjunction is to be
evaluated.

Like or connectives, and connectives are allowed within query terms. The
semantics of a query term such as that of Example 23 is that of the correspond
compound query (Example 22 in case of Example 23). The issue is addressed
formally and in more details in [9].

5 Goals and Programs

An Xcerpt program consists of one or several rules and of one or several goals,
i.e. queries, the answers to which are to be determined.

The following example is an Xcerpt program consisting of

1. a rule collecting in a “view” element books elements book giving in a com-
mon format the title and all the authors of each book available at each of
the sites amazon.com (cf. Example 3) and bn.com (cf. Example 2).

2. a rule returning in a “view” element bibliography for each author in the
“view” books the collection of the books he or she authored

3. a goal requesting to output in the resource buneman-bibl.xml the bibliog-
raphy of the author Buneman,

4. a goal requesting to output in the resource authors.xml the authors of the
book entitled “Data on the Web”.

Example 24.

rule { cons {

books {

all book { title { TITLE }, authors { all AUTHOR } }

}

},

or {

query {

in { "bn.com" },

bib {{

book {{ title { TITLE }, desc author { AUTHOR } }}

}} },

query {

in { "amazon.com" },

reviews {{

entry {{ title { TITLE }, desc author { AUTHOR } }}

}} }

}

}

rule {

cons {

bibliography {

all author-books { AUTHOR, all book{ TITLE } }

}

},

query {

books {{

14

book {{ TITLE ; title, authors {{ AUTHOR ; author }} }}

}}

}

goal{

out{ "buneman-bib.xml" },

bibliography { X ; desc author-books { "Buneman" } }

}

goal{

out{ "authors.xml" },

books { book { title { "Data on the Web" }, Y ; authors } }

}

ut

In the Xcerpt program of Example 24, the query of the second rule is as-
signed no resources. This means that the “working space” of the evaluator is
the resource to query. With the construct out, the goals are assigned resources
where the computed results are to .

Answers to a goal are values bound to the variables occurring in the goal,
if there are such variables, the Boolean values “true” or “false”, otherwise. For
example, the following goal returns the value “true” if (and only if) the resource
against which it is evaluated refers to a book entitled “Data on the Web”.

Example 25.

goal{

out{ "websearch.xml" },

desc book { title { "Data on the Web" } } }

}

ut

Goals are almost like rules’ query. The (significant) difference is that goals
might specify an out resource (where the answers to the goals are to be stored),
while rules’ queries cannot. Indeed, answers to rules’ query are intermediate
results stored in the working space of the Xcerpt processor. Both, goals and
queries, might specify in resources, i.e. resource against which they are to be
evaluated.

In contrast to a program’s goal, a rule’s query is not necessarily to be evalu-
ated. If it is to be evaluated, the values occurring in the program’s goals might
constrain the rule evaluation. E.g. with the program of Example 24, an efficient
Xcerpt processor would query the sites amazon.com and bn.com only for the
book entitled “Data on the Web” or for books one authors of which is “Bune-
man”. Such a backchaining of values from goals, i.e. data retrieval requests, to
the queries eventually posed to resources is essential for an efficient evaluation
of queries on the Web. Without such a backchaining, complex queries would
soon induce querying by far more Web sites and collecting more data than pos-
sible. Thus, Xcerpt rules specify views, in the database sense, that are virtual
in the sense that they are not necessarily evaluated during the evaluation of a
query.

Both a forward chaining (as in deductive databases) and a backchaining (as
in Prolog) are possible for processing Xcerpt programs. Note that backchaining

15

requires to “unify” query and construct terms that might both contain un-
bound variables. To this aim, Xcerpt relies on a non-standard unification called
“Simulation Unification’, cf. Section 9.1 and [7].

Allowing several goals in an Xcerpt program makes a combined evaluation
and a sharing of intermediate results needed for answering several goals possible,
thus giving rise to efficient evaluations.

6 Rule Chaining

Xcerpt allows to “chain” rules, i.e. to refer to the head of a rule in the body of
another rule. Remind (cf. the previous Section 5) that Xcerpt rules specify vir-
tual views that in general are never fully computed during the evaluation of the
goals. Therefore, chaining rules is a convenient mean for a stepwise expression
of complex queries and/or transformations which does not necessarily result in
an inefficient evaluation.

Example 26. Consider the rule of Example 20. Assume the data retrieved is to
be further transformed into two different formats, HTML [10] (suitable for a
PC screen) and WML [11] (suitable for the small screen of a Personal Digital
Assistant). This can be expressed adding the following rules to that of Example
20 that both query the “result” of the rule of Example 20.

rule { cons {

table {

tr { td { "Booktitle" }, td { "Price at A" }, td { "Price at B" } },

all tr { td { TITLE }, td { PRICEA }, td { PRICEB } }

}

},

query {

books {{

book { title { TITLE }, price-a { PRICEA }, price-b { PRICEB } }

}}

}

}

rule { cons {

all card {

"Title: ", TITLE, br{},

"Price at A", PRICEA, br{},

"Price at B", PRICEB, br{}

}

},

query {

books {{

book { title { TITLE }, price-a { PRICEA }, price-b { PRICEB } }

}}

}

}

ut

7 Further Constructs of Xcerpt

7.1 Attributes

In Xcerpt’s simplified syntax, attributes are expressed as follows.

16

Example 27. The following entry element has two attributes named language

and isbn. The values of these attributes are the book’s language (denoted “en”)
and the book’s ISBN number respectively.

entry {

att{ language { "en" }, isbn { "1-55860-622-X" } }

title { "Data on the Web" },

price { "34.95" },

review { "A good discussion of semi-structured database systems and XML." },

}

ut

XML ID and IDREF attributes have special notations in Xcerpt’s simplified
syntax: An ID attribute a attached to element elt is denoted by a : elt and an
IDREF attribute referring to elt is denoted by ↑a.

Example 28. Example 2 is modified such that the data about the authors are
stored only once and referenced to at different places:

bib {

a1: author { last{ "Stevens" }, first { "W." } },

a2: author { last{ "Abiteboul" }, first { "Serge" } },

a3: author { last{ "Buneman" }, first { "Peter" } },

a4: author { last{ "Suciu" }, first { "Dan" } },

book {

title { "TCP/IP Illustrated" },

authors [↑ a1],

publisher { "Addison-Wesley" },

price { "65.95" }

},

book {

title { "Advanced Programming in the Unix environment" },

authors [↑ a1],

publisher { "Addison-Wesley" },

price { "65.95" }

},

book {

title { "Data on the Web" },

authors [↑ a2, ↑ a3, ↑ a4],

publisher { "Morgan Kaufmann Publishers" },

price { "39.95" }

}

}

ut

7.2 String and Label Retrieval

Variables and regular expressions on strings for both, text data and labels (i.e.
XML tags), are supported by Xcerpt.

7.3 Groups

Group constructs make it possible to specify in and/or out resources for several
rules and/or goals.

Example 29.

17

group{

out { "output1.xml" }, in { "db1.xml", "db2.xml" },

rule { cons { c1 { . . . } }, query { q1 { . . . } } },

rule { cons { c2 { . . . } }, query { q2 { . . . } } },

rule { cons { c3 { . . . } }, query { in { "db3.xml" }, q3 { . . . } } },

goal{ c1 { . . . } },

goal{ out{ "output2.xml", "output3.xml" }, c2 { . . . } }

}

ut

The in and out resources specified in the in and out elements of the group

hold for the rules and goals in the group: The answers to both goals are to be
stored in output1.xml and the queries are to be evaluated against (both of)
the resources db1.xml and db2.xml. The scope of thein and out specifications
is the group in which they occur.

The third rule’s query, however, mention another in resources, db3.xml,
which overrides for this rule’s query db1.xml and db2.xml that are specified at
a higher level. Similarly, the out resources output2.xml and output3.xml spec-
ified in the second goal overrides for this goal the output1.xml: The answers
to this goal are to be stored in (both of) output2.xml and output3.xml.

8 Elements for a Comparison of Xcerpt and XQuery

Queries expressed in XQuery are sometimes more compact than their counter-
part in Xcerpt. However, XQuery queries are often more difficult to comprehend
than Xcerpt queries. XQuery expression often do not well convey the structure
of the data items to be retrieved like e.g. in the following examples.

Example 30. Consider the database term of Example 2. In the following, the
left query lists for a title, all its authors, and the right query lists all authors
for a title. Expressed in XQuery, the queries are as follows:

<results>

{

for $b in

document

("http://bn.com")/bib/book

return

<result>

{ $b/title }

{ $b/author }

</result>

}

</results>

<results>

{

for $a in

distinct-values

(document("http://bn.com")//author)

return

<result>

{ $a }

{

for $b in document("http://bn.com")/bib/book

where some $ba in $b/author

satisfies deep-equal($ba,$a)

return $b/title

}

</result>

}

</results>

The same queries are expressed in Xcerpt as follows:

18

rule { cons {

results {

all result {

TITLE,

all AUTHOR

}

}

},

query {

in { "bn.com" } ,

bib {{

book {{

TITLE ; title,

authors {{ AUTHOR ; author }}

}}

}}

}

}

rule { cons {

results {

all result {

all TITLE,

AUTHOR

}

}

},

query {

in { "bn.com" } ,

bib {{

book {{

TITLE ; title,

authors {{ AUTHOR ; author }}

}}

}}

}

}
ut

The only difference between both Xcerpt rules is the position of the all

construct in the rules’ construct term. Reflecting a common understanding of
the natural language requests, the rules’ query parts are identical. In contrast,
XQuery requires two completely distinct queries.

Furthermore, the meaning of the Xcerpt rules is arguably easier to grasp als
that of the XQuery expressions.

9 Outlook into Xcerpt’s Semantics

This section is an informal introduction into Xcerpt’s evaluation strategy. Refer
to [7] for a more detailed presentation. Xcerpt’s evaluation strategy has been
implemented in a prototype which can be found at [12]. Xcerpt’s Procedural
Semantics is closely related to evaluation strategies used in Constraint and Logic
Programming.

9.1 Procedural Semantics: Simulation Unification

Xcerpt relies on a non-standard unification called “Simulation Unification” [7].
This non-standard unification is indispensable for the following reasons:

– partial patterns in a query term (expressed in Xcerpt with the double brack-
ets {{ }} and [[]]) have to be properly processed selecting terms that might
have subtermds not explicitely mentioned in the query term,

– the descendant construct must be dealt with,

– ordered and unordered terms (expressed in Xcerpt with the brackets { } and
[]) have to be handled according to their semantics.

A so-called simulation preorder [7] as the underlying theory provides with
the necessary semantics to handle these properties. A simulation is a relation
between two graphs where intuitively one graph simulates in the other if all its
vertices and corresponding edges can be found in this graph (see Figure 1). Two
ground query terms t1 and t2 are in the simulation preorder, written t1 � t2,
if t1 can be simulated in t2. For two terms t1 and t2, a simulation unifier is a
substitution σ such that t1σ � t2σ.

19

f

b

d e d

b

a

f

d

e

da c

Fig. 1. Ground Query Term Simulation between two graphs
The simulation relation is illustrated by the dashed arrows. Note that the graph on the right
hand side may contain additional nodes not represented in the left graph.

As a consequence of using the simulation preorder � instead of equality as
in standard unification, two terms t1 and t2 several incomparable “unifiers” .
This is trhe case e.g. if t1 = f{{X}} and t2 = f{a, b}: The two substitutions
σ1 = {X = a} and σ2 = {X = b} are relevant).

Instead of returning each of these substitutions separately, the simulation
unification algorithm described in [7] returns a formula consisting of “and” and
“or” conected constraints on the variables (in the above mentioned case, this
formula is σ = X = a ∨X = b).

9.2 Procedural Semantics: Inferences

Using Simulation Unification, several form of rule processing are conceivable.
Forward chaining, as in deductive databases, could be an appropriate way to
perform e.g. a transformation of a whole XML database. Backward chaining
appears more adequate for answering queries posed to the Web or to a very
large database, cf. Section 6.

In either way, a chaining of rules can be realised using a constraint solver.
Instead of immediately committing variables to a binding (e.g. σ = X = a ∨
X = b), variables are kept in inequations as long as possible (e.g. σ = X �
a∨X � b). A (simple) constraint solver is then used for detecting and removing
inconsistencies. In the formula a � X ∧ (X � a ∨X � b), the branch X � b is
removed, yielding a � X ∧X � a. As a final step, all inequations that provide
an upper bound for a variable are replaced with a binding of that variable to
this upper bound (i.e. a � X ∧X = a).

9.3 Declarative Semantics

Xcerpt’s declarative semantics is described in [13]. It is defined in terms of a
model theory à la Tarski, i.e. the declarative semantics of a compound expression
is defined in terms of its components.

20

10 Perspectives

In this article, the query and transformation language Xcerpt has been intro-
duced on examples. Its design principles and its basic constructs have been
introduced and illustred.

While the basic constructs introduced above are sufficient for elementary
queries and transformations, a query language also needs additional tools (e.g.
arithmetics and aggregations functions) as well as advanced features (e.g. a
type system making a type-checking at compile time possible). The following
additional features of Xcerpt are currently under development. (Note that the
following list is not complete.)

Basic datatypes. In this article, only string data are mentioned, although
Xcerpt’s support of various basic scalar types such as different kinds of num-
bers (e.g. integers and reals) is under development. The (current) view is that
Xcerpt will support the “simple types” of XML Schema [14,15,16] including ba-
sics operations on these types (such as e.g. basic arithmetics on number types).

Elementary text processing primitives. In addition to the primitives forseen in
XML Schema [14,15,16] for the simple types “string”, “normalizedString”, and
“token”, Xcerpt includes primitives (inspired from Perl [17]) for an an elemen-
tary text processing – among others, regular expressions for text selection.

Aggregation. In re-assembling answers to queries into new data items, one often
needs to collect several answers (as with the all construct, cf. Section 3.5) or
to compute values (such as an average) from collected answers. In addition to
the all construct, Xcerpt supports standard aggregation primitives such as avg
(average), max, min for number datatypes, and concat (concatenation) for text
datatype.

User defined constraints. Xcerpt allows the user to specify additional con-
straints to variables occuring in query terms. These user defined constraints
may be expressed in terms of simulation unification (cf. Section 9.1) or using
system or user-defined functions.

System and user-defined functions. It is possible to refer in an Xcerpt program
to functions specified (e.g. by the user) outside the Xcerpt program.

Polymorphic Type system. A type system has two advantages: Programming
errors can be detected at compile time (thus supporting program development)
and the processing of queries can be more efficient. A extensible polymorphic
type system à la ML [18] for Xcerpt is under development using which user
defined types are expressed in an XML Schema syle [14,15,16].

Declarations and shadowing. Variable and type declarations local to part of an
Xcerpt program make it possible that some definitions and names are local to a
program part. Shadowing makes it possible to two differently binds same names
within different program parts.

21

Modules. Modules aqrte under developments using which parts of Xcerpt pro-
grams can be imported and exported so as to combine parts of programs in
different manners and to hide parts of programs that have no global relevance.

Negation. Xcerpt needs a negation using which among other things set differ-
ences could be constructed. Used in rule’s queries, such a negation is likely to
be non-monotonic and therefore to have a rather complex semantics. A pratical
and convenient choice for Xcerpt might be to restrict the use of negation to
stratified negation.

Xcerpt is an experimental language still under development. First experi-
ments with practical examples, e.g. that of the XQuery Use Cases [4], suggest
that Xcerpt’s main features are very convenient. In the future, some aspects of
Xcerpt might be revised and/or refined, depending on the experience collected.
Experiments with a prototype show that pattern queries, i.e. one the salient
features of Xceprt, can be efficiently evaluated.

References

1. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web. From Relations to Semistruc-
tured Data and XML. Morgan Kaufmann (2000)

2. World Wide Web Consortium (W3C) http://www.w3.org/. (2002)
3. Fernandez, M., Siméon, J., Wadler, P.: XML Query Languages: Experiences and Exam-

plars. Communication to the XML Query W3C Working Group (1999)
4. Chamberlin, D., Fankhauser, P., Marchiori, M., Robie, J.: XML query use cases. W3C

Working Draft 20 (2001)
5. Olteanu, D., Meuss, H., Furche, T., Bry, F.: XPath: Looking Forward. In: Proceedings

of Workshop on XML Data Management (XMLDM), http://www.pms.informatik.uni-
muenchen.de/publikationen/#PMS-FB-2002-4, Springer-Verlag LNCS (2002)

6. Buneman, P., Fernandez, M., Suciu, D.: UnQL: A Query Language and Algebra for
Semistructured Data Based on Structural Recursion. VLDB Journal 9 (2000) 76–110

7. Bry, F., Schaffert, S.: Towards a Declarative Query and Transformation Language for
XML and Semistructured Data: Simulation Unification. In: Proceedings of the Int. Conf.
on Logic Programming (ICLP), Copenhagen, Springer-Verlag LNCS (2002)

8. Maier, D.: Database Desiderata for an XML Query Language. In: Proceedings of QL’98
- The Query Languages Workshop. (1998) http://www.w3.org/TandS/QL/QL98/.

9. Bry, F., Olteanu, D., Schaffert, S.: Grouping Constructs for Semistructured Data. In:
Proceedings of DEXA 2001, Munich (2001)

10. W3C http://www.w3.org/TR/xhtml1/: XHTML 1.0: The Extensible HyperText Markup
Language. (2000)

11. WAP Forum http://www.wapforum.org: Wireless Markup Language (WML). (2000)
12. Schaffert, S.: Xcerpt Prototype, http://demo.xcerpt.org. (2002)
13. Bry, F., Schaffert, S.: The XML Query Language Xcerpt: Design Principles, Examples

and Semantics. Technical report, Institut für Informatik, LMU München (2002)
14. W3C http://www.w3.org/TR/xmlschema-0/: XML Schema Part 0: Primer. (2001)
15. W3C http://www.w3.org/TR/xmlschema-1/: XML Schema Part 1: Structures. (2001)
16. W3C http://www.w3.org/TR/xmlschema-2/: XML Schema Part 2: Datatypes. (2001)
17. Wall, L., et al: Practical Extraction and Report Language, http://www.perl.com/. (1987-

2002)
18. Lucent Technologies, Bell Labs http://cm.bell-labs.com/cm/cs/what/smlnj/: Standard

ML of New Jersey. (1996)

22

